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Synopsis 

The molecular weight distribution of a linear homologous polymer is usually obtained empirically 
for any particular sample. Sample-to-sample comparisons are made in terms of the weight- or 
number-average molecular weights and graphic displays of the distribution curves. Such treatment 
generally precludes data interpretations in which a distribution can be described in terms of differing 
proportions of mixed populations. However, a statistical continuous univariate distribution function 
such as the Weibull can be applied to the molecular weight distributions measured for cellulose nitrate 
samples. The size distributions of samples degraded under some gentle stress may then be identified 
as consisting of differing proportions of populations with similar characteristic distributions. An- 
alyzing data in this way should permit interpretation of the results as for breakdown of oligomers 
in a small-molecule system. 

INTRODUCTION 

The polydispersity p of a linear homologous polymer is usually described in 
terms of the ratio of the weight-average molecular weight, Mw to the number 
average molecular weight an, where 

where ni is the number of molecules of molecular weight wi, and 

is the molecular weight frequency distribution on a weight basis. If the i size 
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classes are ranked in order of increasing molecular weights, the cumulative dis- 
tribution, i.e., the weight fraction of molecules with molecular weight S w j ,  is 
expressed by 

j 
Fj = C f i  

i =  1 
(4) 

On a number basis, the molecular weight frequency distribution is simply 

ni h. =- 

c ni 
i 

and, with ranked size classes, the number fraction of molecules with molecular 
weight I w ,  is 

Most often, the frequency distribution is obtained empirically for any par- 
ticular sample, and sample-to-sample comparisons are made only in terms of n,,,, a,, and graphic displays of the distribution curves. Frequently, this 
treatment of the data is adequate-particularly if the weight distribution is 
clearly characteristic of a single population. On the other hand, such treatment 
generally precludes data interpretations in which a distribution can be described 
in terms of differing proportions of mixed populations-especially when these 
populations have considerable overlap. 

For example, consider the case of a monodisperse polymer with degree of po- 
lymerization (w) of 1000 in which the molecules split in half in a slow process 
under some gentle stress. The resultant distribution would be bimodal, with 
the amount of material a t  w = 500 increasing with time as the amount at w = lo00 
decreased. For typical polydispersities, on the other hand, at least the early 
results would appear simply as a gradual diminution of the average molecular 
weight, corresponding to a gradual shift to the left of the distribution curve. In 
general, the results would be indistinguishable from a process involving random 
breakdown along the length of the molecule, or from a molecular weight decrease 
by “peeling off” of monomer from one end. 

Suppose, however, a characteristic functional relationship can be ascribed to 
the distribution of polymer sizes in a polymer population. The distribution of 
the breakdown sizes can then be identified in terms of another such population 
or as consisting of differing proportions of two or more populations each with 
its own characteristic distribution. The results can be interpreted then as in 
the case of the monodisperse system or as with oligomers in a small-molecule 
system. 

One of the newer statistical continuous univariate distribution functions, the 
Weibul1,l appeared to have sufficient versatility and analytical tractability for 
treatment of such problems. This paper describes its application to the mo- 
lecular weight distributions of samples of cellulose nitrate obtained from filter 
paper and microcrystalline cellulose. A companion papefi discusses its use in 
interpreting changes in molecular weight distributions during the early pyrolysis 
of cellulose. 
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EXPERIMENTAL 

The molecular weight distributions were determined2,3 by gel permeation 
chromatography (GPC) on the tetrahydrofuran (THF) solutions of the nitrated 
samples of filter paper (Whatman # 541) and microcrystalline cellulose (Avicel). 
However, the data processing procedures were modified somewhat. In the earlier 
determinations, the authors used polystyrene standards to generate calibration 
curves (logarithm of degree of polymerization w versus retention volume u )  for 
cellulose nitrate in the GPC system. Comparison of the sample average mo- 
lecular weights thus calculated gave agreement within 10% with viscometric 
measurements of the same solutions. Since the calibration curves were nearly 
linear over most of the range of interest, a new computer program was written 
in which a linear calibration curve was assumed, i.e., 

In w = su + k (7) 

The values for s and k were chosen to give the best (least squares) fi t  to the vis- 
cometric measurements for all cellulose nitrate solutions to which the particular 
calibration curve applied. 

For each GPC run, the basic output is a plot of refractometer signal versus 
retention volume. In the computer-linked data reduction process, the abscissa 
of the chromatogram is divided into Y equal-volume increments and the incre- 
mental areas under the curve normalized in terms of the total. Thus, 

Ai’ = &/AT (8) 

where 

is the total area of the chromatogram and Ai is the area under the chromatogram 
for u;, the ith volume increment. 

For sufficiently small increments, wi may be taken as the molecular weight 
of the polymer molecules at the midpoint of the volume increment and may be 
obtained from ui using eq. (7). With a direct linear relationship between the 
refractometer signal and the weight concentration of the polymer in u;, 

fi = Ai’ (10) 

To a degree of approximation determined by the accuracy of the calibration curve 
and the size of the increments, 

hi = Mn(Ai’/wi) (11) 

THE WEIBULL CUMULATIVE DISTRIBUTION FUNCTION 

For the present purposes, the Weibull cumulative distribution function may 

(12) 

Although this function is finding increasing ~ t i l i t y , ~ , ~  especially for problems 
involving “failure” (including, e.g., the breakdown of large particles to give a size 
distribution of smaller particles), it has no theoretical justification.’ . Thus, in 

most conveniently be written in the following form: 

F ( x )  = 1 - exp{-[(x - 7)/a] f i )  x 1 y 1 0, a > 0, p > 0 
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the present problem, there is no a priori reason for deciding whether the distri- 
bution should be expressed on a weight or number basis, i.e., whether F(x) should 
represent the weight fraction or number fraction of molecules of size I x .  Neither 
choice is without its mathematical drawbacks, and it can be readily shown that 
a Weibull distribution on one basis cannot be converted into a mathematically 
exact Weibull distribution on the other basis. Empirically, however, it will be 
shown that, within the limits of experimental variation, reasonably good fits may 
be obtained on either basis, i.e., if the experimental molecular weight frequency 
distribution on a weight basis is such that it is reasonably approximated by 

another approximation on a number basis may be found such that 

WEIGHT BASIS 

The normalized experimental chromatogram corresponds to a plot of dF/d (In 
w )  versus in w. The theoretical equivalent of the ordinate, obtained by differ- 
entiating eq. (13), is 

f = dF/d(ln w) = wdF/dw = (p /aP)w(w - 7 ) P - l  expl-[(w - y)/a]P) (15) 

The location or threshold parameter y corresponds to the w (more strictly, the 
u )  at which the first detectable signal above the solvent base line is seen. There 
is a single mode at w,, defined by 

[(wm - y)/a]’+ (y/PWm) = 1 (16) 

such that w, is 0, the scale parameter, when the shape parameter p is 1. Further, 
whenever w, >> y, its value approaches a, and p is related to the peak height 
by 

p N ef,,, N 2.718.. . f, (17) 

Another useful relationship, apparent from eq. (13), is that, whatever the value 

Fy+a = 1 - e-l = 0.6321.. . (18) 

Also, the cumulative Weibull distribution function can be linearized by a double 
logarithmic transformation; thus, 

(19) 

Then, when the correct value of y is chosen, a plot of the left side of eq. (19) versus 
In (w - y) gives a straight line with slope p. From this line, a is obtained readily 
by eq. (18). To simplify such plots, Weibull probability graph paper is available 
commercially. 

With a, p, and y known, the computation of Mw for the sample is straight- 
forward: 

ofp,whenw = ? + a ,  

In In [l/(l - F ) ]  = In (w - y) - In a 

R w  = in; wfd(1n w )  = Lm fdw 
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Since f = wdF/dw, Mw is simply p, the first moment of w about the origin. Its 
analytical expression is 

aW = + cur[@ + i)/p] (21) 
where r[r] = J; xr-I e-x d x ,  the gamma function. 

Unfortunately, there is no comparable general analytical expression for 

Thus, a, must be evaluated numerically-a tedious task by hand, but a trivial 
problem for even the smallest computer. Since the polydispersity p is simply 
the ratio of a, to a,, in the general case p ,  too, must be evaluated numerical- 
ly. 

NUMBER BASIS 

For comparison with a theoretical curve on a number basis, the experimental 
chromatogram requires an appropriate transformation. For any given weight 
of polymer, the number of molecules increases as w decreases. Thus, transfor- 
mation to a number basis places increasing emphasis on the early (low w) portions 
of the chromatogram, frequently placing greatest emphasis on that portion of 
the curve with the greatest experimental uncertainty. Nevertheless, from a 
computational and interpretive standpoint, the transformation is extremely 
attractive. 

In practice, it is perhaps more elegant to transform the theoretical curve to 
match the experimental chromatogram. On a number basis, the theoretical 
equivalent of the ordinate is ( w / m n ) h ,  where 

h = dH/d(ln w)  = wdH/dw = (b /ab)w(w - g)b-l exp(-[(w - g)/a]bl (23) 

Here, g is the threshold which, because of the exaggeration of this end of the 
curve, will usually appear slightly to the left of the threshold on a weight basis 
(i.e., g < y). The mode is defined by 

[ (Wm - g)/alb = 1 + [(I - 2g/wm)/b] (24) 

Regardless of the value of b,  for 2g > w,, w,  < g + a;  for 2g = w,, w,  = g + a; 
for 2g < w,, w,  > g + a. As b increases, w ,  tends very rapidly to g + a. For 
b N 1, the mode is a t  w ,  = 2a. 

Matching the theoretical curve to the experimental chromatogram requires 
the prior computation of the theoretical value form,,. Alternatively, a matching 
theoretical ordinate, wh, can be used if the total area under the experimental 
curve is normalized to the experimental value of m,, rather than to unity. An- 
other alternative is to transform the chromatogram to a number basis by dividing 
each Ai by the corresponding wi and normalizing to 

The comparable theoretical ordinate, then, is simply h, and the mode on this basis 
occurs a t  

w,’ = g + u [ ( b  - l) /b]l’b (26) 
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- _  
On a number basis, the relationship between a, b, and g and M,, M,, and p-as 

well as common statistical terms such as mean and variance-is straightforward 
if the method of moments is used: 

a, = J m  h d w  

is the first moment about the origin, i.e., the mean. Its formula is 

M, = g + a r [ ( b  + i ) i b ]  (28) 

The second moment about the mean, the variance, is given by 

a2 = a2[r(i + z /b)  - rqi + l i b ) ]  (29) 

Now, since 

a, = 112, J whdw 
_ _  
M,,M, is the second moment about the origin. Thus, 

- -  
M,M, = a2  + Mn2 

or 

COMPARISON WITH EXPERIMENTAL DATA 

The original recorder tracing of a typical chromatogram has a line width of 
roughly 0.7 mm and a peak height in the range of 20 to 50 mm. Thus, the width 
of the recording line corresponds to about 3% of the maximum signal. Further, 
the baseline is not flat, but is drawn between the “start” and “end” of the chro- 
matogram. The selection of these two points, especially the lower terminus 
where the chromatogram rise is slow, adds additional uncertainty. Finally, the 
computer program-which involves reading the chromatogram at a limited 
number of select points and interpolating intermediate values-introduces 
further uncertainty. For all of these reasons, the criteria we have chosen for a 
“good fit” between a theoretical curve and the experimental data are agreement 
within 1% in the cumulative distribution and within 10% in the differential 
curve. 

A typical normalized chromatogram and its normalized cumulative distribu- 
tion on a weight basis are shown in Figure 1. The corresponding theoretical 
curves identified as F in Figure 1 were obtained by computer fitting a Weibull 
curve on a weight basis until agreement along the entire curve fell within the 
criteria for a “good fit.” For the curves identified as H in Figure 1, the experi- 
mental data were converted to a number basis and the fitting procedure was 
repeated. The theoretical curve thus obtained was transposed back to a weight 
basis for plotting. 

Within the criteria of a (‘good fit,” then, Figure 1 demonstrates that Weibull 
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Fig. 1. Normalized experimental chromatogram and cumulative distribution on a weight basis 

with theoretical curves for Weibull distribution fits on a weight or number basis. Differences between 
curves for H and F were too small to distinguish on this scale. 

distributions on both a weight and a number basis can be fit to the same exper- 
imental distribution. Since mathematically equivalent Weibull distributions 
on both bases are excluded, one additional comparison was made. The values 
obtained on transposing the H curve to a weight basis were fed into the computer 
as a synthetic experimental curve to be fitted by a theoretical Weibull distri- 
bution. The resultant equation, labeled F’ in Figure 1, agrees with curve H 
within better than 1% in differential form. However, F’ does not meet the criteria 
for a good fit  with the experimental data since its maximum deviation in the 
cumulative distribution is more than 1.2%. 

For both the untreated filter paper and similar paper decrystallized by swelling 
in liquid ammonia, Weibull parameters (Table I) on both a weight and number 
basis were found to fit the corresponding experimental curves with agreement 
like that shown in Figure 1. On both the weight and number basis, the calculated 
values of M, and zn gave excellent agreement with the experimental values 
(Table 11). Since there is more uncertainty in the determination of the experi- 
mental mode, agreement between experimental and theoretical values of w, is 
not as good. 



1674 BROIDO AND YOW 

TABLE I 
Values for Weibull Parameters Used to Compute @, , Gn, and w, for Table I1 

Sample 01 0 y wt.% w, a b g n o %  w, 

Untreated 
cellulose: 
1 738 1.70 186 
2 727 1.70 256 
3 722 1.85 252 

Decrystallized 
cellulose: 
1-component 683 1.68 215 

564 1.50 152 
582 1.58 206 
592 1.67 220 

544 1.58 168 

monomer 125 1.15 185 5.6 228.4 
trimer 478 2.30 240 16.8 685.2 
tetramer 732 1.70 255 77.6 913.6 

Microcrystalline 
cellulose: 

major 205 1.36 46.5 86 228 . 132 1.15 23.5 66.7 232 
1 
minor 34.5 1.65 16.0 14 46 34.5 1.25 16.0 33.3 60 

major 222 1.11 63.4 76 237 133 1.10 37.0 33.3 244 

minor 31.2 1.70 8.7 24 37 18.0 1.05 8.4 66.7 35 
2 

major 220 1.35 35.0 80 237 135 1.10 21.0 50.0 245 

minor 37.0 1.25 15.0 20 44 25.4 1.14 15.4 50.0 47 
3 

major 220 1.95 12.0 66 228 119 1.15 60.0 33.3 220 

minor 68.0 1.28 12.0 34 7 3  31.0 1.00 13.6 66.7 62 
3’ 

The polydispersities of the microcrystalline cellulose samples are much higher 
than those of the filter paper samples, and we were totally unsuccessful in our 
attempts to fi t  a single-population Weibull. distribution curve to any micro- 
crystalline cellulose chromatogram. However, each chromatogram could be 
described as composed of two overlapping Weibull distributions: a major 
component (on a weight basis) covering the high molecular weight region and 
a minor component (generally about 20% on a weight basis) which might be 
considered to represent further degradation of the major component to lower 
molecular weights. 

The concept may be illustrated by considering microcrystalline cellulose 
samples 3 and 3’. These two measurements were made on the same nitrated 
sample of the starting material. For sample 3, the chromatogram was obtained 
on a freshly prepared solution of the cellulose nitrate. For sample 3’, the solution 
was allowed to stand at  room temperature to permit further degradation as in- 
dicated by the lower average molecular weight (Table 11). The chromatogram 
for sample 3 was resolved into an 80% fraction with mode near 230 and a 20% 
fraction of smaller-sized molecules (Table I). The major component of sample 
3’ also has its mode near 230, but now the major component comprises only 66% 
of the sample. It is worth noting, but not necessarily significant, that on a 
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TABLE I1 
Experimental Values of a,,,, a,,, and w m  and 

Theoretical Values Calculated from Parameters in Table I 
_. __ 

Mw Mn Wm 

Sample Expt. Eq. F Eq. H Expt. Eq. FEq. H Expt. Eq. F Eq. H 

Untreated cellulose: 
1 
2 
3 

1 -component 
composite 

1 
2 
3 
3’ 

Decrystallyzed cellulose: 

Microcrystalline cellulose a : 

860 
91 6 
91 1 

832 

207 
21 3 
201 
161 

844 842 664 
904 886 749 
893 891 758 

826 810 663 
834 

208 206 116 
217 198 7 3  
199 204 95 
162 164 86 

665 
747 
754 

668 
660 

114 
80 
95 
8 7  

661 
728 
749 

65 7 

115 
73  
95 
81 

794 
828 
8 64 

7 23 

240 
283 
256 
182 

867 869 
910 909 
914 916 

834 836 
790 

228 225 
239 243 
236 242 
206 194 

a All theoretical curves for microcrystalline cellulose are composite. 

number basis all the microcrystalline cellulose samples can be represented as 
ratios of 2 to 1,1 to 1, or 1 to 2 of the two components. 

The major component of all the microcrystalline cellulose samples had modal 
values near 230, while the modal values for the single-component Weibull fits 
to the filter paper samples were very nearly four times as large. Microcrystalline 
cellulose is produced by the acid hydrolysis of larger cellulose molecules-one 
of several size-degradation processes which, for cellulose, is characterized by a 
sharp drop in average size of the material. to a “leveling off” degree of polymer- 
ization. If, then, w, = 230 were considered to represent a macromolecular 
“monomer” at  this “leveling off” size, the original filter paper samples would 
be comprised of tetramers. Then, as the average molecular weight of such 
samples dropped as the sample was degraded, the degraded chromatograms 
might be resolvable in terms of appropriate fractions of trimers, dimers, and 
monomers. 

Consider, for example, the decrystallized cellulose sample listed in the tables. 
A good single-component Weibull distribution curve fit can be found for its 
chromatogram. However, the average molecular weight of this sample is 
somewhat lower than those for the untreated cellulose. Correspondingly, the 
modal value for the Weibull approximation is low. Suppose that during the 
processing of this sample (during the decrystallization, the nitration, or the so- 
lution of the nitrate) partial degradation occurred, with each decomposing tet- 
ramer molecule breaking down into a trimer and a monomer. Then, on a weight 
basis, the yield of monomer should be just one fourth the loss of tetramer while 
the yield of trimer should be three fourths the tetramer loss. The “composite” 
values shown in Table I1 for a distribution synthesized from the components 
shown in Table I indicate the excellent agreement which may be obtained. 

Untreated cellulose sample 1 also has an average molecular weight somewhat 
lower than the other two untreated samples in Table 11. Its chromatogram, too, 
can be resolved into a major tetramer component with modal degree of poly- 
merization 914 and minor contributions from monomer and trimer components. 
Since all samples can degrade slightly during processing, this high value for w, 

, 
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has been taken as a lower limit for the “true” value of the tetramer. Of course,. 
the degree of polymerization of the monomer then would be about 228, at  the 
low end of the modal values observed for the major component of the micro- 
crystalline cellulose samples. Since microcrystalline cellulose is obtained by 
degrading larger cellulose molecules until they approach a levelling-off degree 
of polymerization, a selection a t  the low end here would seem appropriate. 

In conclusion, then, the Weibull distribution function can be applied to the 
molecular weight distributions of cellulose samples. The use of such a function 
permits a search for interpretations of experimental results in ways not possible 
with the usual empirical sample-to-sample comparisons. The application of 
these techniques to a study of the beginning phases of cellulose pyrolysis is the 
subject of a companion paper.4 
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